
香港科技大学大数据科技硕士课程目标
大数据科技的兴起 ,正在改变我们的社会与商业模式, 以及工程与科学的发展。 香港科技大学理学硕士(大数据科技)课程旨在教导学员了解大数据和其相关方面,使学员熟悉大数据系统的作业流程和其对社会的影响。
该课程把不同的学科整合起来,学员将学习大数据的主要组件:
大数据基础架构
大数据整合
大数据存储
大数据建模和管理
大数据计算系统
大数据分析和挖掘系统
大数据的安全性,政策和社会影响,以及人为因素
其在各个领域的大数据应用(数据科学)
香港科技大学大数据科技硕士课程资料
课程开学日期
每年九月与二月
课程周期及授课时间
全日制课程学员不应就业。至于兼职工作,全日制课程学员应该遵守大学及入境处的守则 。
在有合理原因的特殊情况下,学员可提出休学申请。休学期限通常不多于一个学期。
课目一般于周一至周五晚间(或周六下午)授课。每课通常一周上课三小时。如有开设予全日制学员的课目,或于下午授课。
选择修读「硕士研究报告」的学员可与导师在双方协调的时间进行指导。
教学地点
授课地点在香港九龙清水湾科技大学校园内。从就近的坑口或彩虹地铁站乘坐小巴或公车到校园约需10分钟。
设施
学员可免费享用大学图书馆、计算机、体育及康乐设施及电邮服务。学员於毕业後亦可申请相关的校友服务。
住宿
所有全日制学生都可申请大学安排的校外住宿。成功申请入学的学生获取录之同时会收到由课程办公室 (或学务长办公室) 发出申请大学安排的校外住宿的数据。多数情况下,持有学生签证的非本地生在申请大学安排的校外住宿时有优先权,但申请成功率将视乎申请人数、宿位数目及大学现有的规则而定。
香港科技大学大数据科技硕士课程费用与资助
学费
理学硕士课程的学费为港币 150,000 元 (2016年秋季学费) , 允许转换学分的新学员也需缴付全额学费。 学员修读额外学课或未能完成某些学课而要重修,需再为每3个学分缴付港币15,000元 (2016年秋季学费)。
香港科技大学大数据科学硕士申请要求
招收对象
本课程招收对象是在各行业、政府部门或其他机构工作的在职专业人员,或者是刚从计算机/数学相关专业学士学位课程毕业的学生。
入学要求
1、申请者须持有大学或高等学校的计算机工程、计算机科学、数学或相关学科的学士学位。 申请者如持有其他学士学位必须具有计算机及数学相关工作经验。
2、a) 托福考试(TOEFL):笔试(PBT)分数≥550,网络考试(IBT)分数≥80;
b) 雅思考试(IELTS):总分数≥6.0,所有测试项目的分数≥5.5。
备注:TOEFL及IELTS成绩的有效日期是由测验当天计起的两年内。
教学语言
所有课程讲授和教学资料均为英语。
香港科技大学大数据科技硕士课程设置
学员必须修满30个学分:其中包括12个学分的基础课(core courses)和18个学分的选修课(elective courses)。 学员将会修读由本课程开办的10门三个学分的课目或8至9门三个学分的课目及另加专题项目。
所有下列课均值三个学分。 经课程主任批准后,学员可以修读由理学硕士(资讯科技)课程开设的最多六个学分的课目来作为达到毕业要求的部分内容。
课程评分和毕业要求
学员须按时上课。各课目的评分方法将按照大学研究生课程的标准。与香港科技大学对所有的研究生要求一致,学员必须完成学习,同时毕业平均成绩等级在2.850 (以A为4分计)或以上。如果学员不能达到毕业要求,便需要重修部分已修读课目或修读其它可替代的课目,并需按所需学分额外缴付学费。
核心课
· MSBD 5001 Foundations of Data Analytics
· MSBD 5002 Data Mining and Knowledge Discovery (Co-Listing with CSIT 5210)
· MSBD 5003 Big Data Computing
· MSBD 5004 Mathematical Methods for Data Analysis
选修课
· MSBD 5005 Data Visualization
· MSBD 5006 Quantitative Analysis of Financial Time Series (Co-Listing with MAFS 5130)
· MSBD 5007 Optimization and Matrix Computation
· MSBD 5008 Introduction to Social Computing
· MSBD 5009 Parallel Programming
· MSBD 5010 Imaging: Data Analytics and Pattern Recognition
· MSBD 5011 Advanced Statistics: Theory and Applications
· MSBD 5012 Machine Learning
· MSBD 5013 Statistical Prediction
· MSBD 5014 Independent Project
*课程开设将视乎需要及实际情况而定
课程评分和毕业要求
学员须按时上课。各课目的评分方法将按照大学研究生课程的标准。与香港科技大学对所有的研究生要求一致,学员必须完成学习,同时毕业平均成绩等级在2.850 (以A为4分计)或以上。如果学员不能达到毕业要求,便需要重修部分已修读课目或修读其它可替代的课目,并需按所需学分额外缴付学费。
課目內容簡介
|
|
|
|
MSBD 5001 |
Foundations of Data Analytics [3 credits] |
|
This course will provide fundamental techniques for data analytics, including data collection, data extraction, data integration and data cleansing. The students will learn how to manage and optimize the analytics value chain, including collecting and extracting the suitable values, selecting the right data processing processes, integrating the data from various resources, data governance, security and privacy for Big Data applications. |
|
|
|
|
|
MSBD 5002 |
Data Mining and Knowledge Discovery [3 credits] |
|
[Co-list with CSIT5210] Data mining has recently emerged as a major field of research and applications. Aimed at extracting useful and interesting knowledge from large data repositories such as databases and the Web, data mining integrates techniques from the fields of database, statistics and AI. |
|
|
|
|
|
MSBD 5003 |
Big Data Computing [3 credits] |
|
Big data systems, including Cloud Computing and parallel data processing frameworks, emerge as enabling technologies in managing and mining the massive amount of data across hundreds or even thousands of commodity servers in datacenters. This course exposes students to both the theory and hands-on experience of this new technology. The course will cover the following topics. (1) Basic concepts of Cloud Computing and production Cloud services; (2) MapReduce - the de facto datacenter-scale programming abstraction - and its open source implementation of Hadoop. (3) Apache Spark - a new generation parallel processing framework - and its infrastructure, programming model, cluster deployment, tuning and debugging, as well as a number of specialized data processing systems built on top of Spark. |
|
|
|
|
|
MSBD 5004 |
Mathematical Methods for Data Analysis [3 credits] |
|
This course will introduce mathematical formulations and computational methods (convex/non-convex optimization) to exploit structures contained in the data. Moreover, specific computational methods (Randomized computational methods) will be explored for big data analysis. |
|
|
|
|
|
MSBD 5005 |
Data Visualization [3 credits] |
|
This course will introduce visualization techniques for data from everyday life, social media, business, scientific computing, medical imaging, etc. The topics include human visual system and perception, visual design principles, open- source visualization tools and systems, visualization techniques for CT/MRI data, computational fluid dynamics, graphs and networks, time-series data, text and documents, Twitter data, and spatio-temporal data. |
|
|
|
|
|
MSBD 5006 |
Quantitative Analysis of Financial Time Series [3 credits] |
|
[Co-list with MAFS5130] Analysis of asset returns: autocorrelation, predictability and prediction. Volatility models: GARCH-type models, long range dependence. High frequency data analysis: transactions data, duration. Markov switching and threshold models. Multivariate time series: cointegration models and vector GARCH model. |
|
|
|
|
|
MSBD 5007 |
Optimization and Matrix Computation [3 credits] |
|
The course will introduce basic techniques about optimization, including unconstrained optimization and constrained optimization, and matrix computation, including matrix analysis, linear systems, orthogonalization and least squares and eigenvalue problems. |
|
|
|
|
|
MSBD 5008 |
Introduction to Social Computing [3 credits] |
|
This course is an introduction to social information network analysis and engineering. Students will learn both mathematical and programming knowledge for analyzing the structures and dynamics of typical social information networks (e.g. Facebook, Twitter, and MSN). They will also learn how social metrics can be used to improve computer system design as people are the networks. It will cover topics such as small world phenomenon; contagion, tipping and influence in networks; models of network formation and evolution; the web graph and PageRank; social graphs and community detection; measuring centrality; greedy routing and navigations in networks; introduction to game theory and strategic behavior; social engineering; and principles of computer system design. |
|
|
|
|
|
MSBD 5009 |
Parallel Programming [3 credits] |
|
Introduction to parallel computer architectures; principles of parallel algorithm design; shared-memory programming models; message passing programming models used for cluster computing; data-parallel programming models for GPUs; case studies of parallel algorithms, systems, and applications; hands-on experience with writing parallel programs for tasks of interest. |
|
|
|
|
|
MSBD 5010 |
Imaging: Data Analytics and Pattern Recognition [3 credits] |
|
This course will introduce the basic techniques for image data analytics and pattern recognition. Topics include image processing and analysis in spatial and frequency domains, image restoration and compression, image segmentation and registration, morphological image processing, representation and description, feature description, face recognition, iris recognition, fingerprint recognition, image analysis topics, such as medical image analysis. |
|
|
|
|
|
MSBD 5011 |
Advanced Statistics: Theory and Applications [3 credits] |
|
This course introduces basic statistical principles, methodology and computational tools needed in performing data analysis. The topics of the course include parametric models, sufficiency principles, estimation methods, liner models, quantile estimations, nonparametric curve estimation, resampling methods, statistical computing and hypothesis testing. |
|
|
|
|
|
MSBD 5012 |
Machine Learning [3 credits] |
|
The course introduces fundamentals of machine learning, including concept learning, evaluating hypotheses. supervised learning, unsupervised learning and reinforcement learning, Bayesian learning, ensemble methods. |
|
|
|
|
|
MSBD 5013 |
Statistical Prediction [3 credits] |
|
This course will introduce statistical predication models and algorithms, including regression models, classification, additive models, graphical models and network, model assessment and selection, model inference and model averaging. |
|
|
|
|
|
MSBD 5014 |
Independent Project [3 credits] |
|
An independent project carried out under the supervision of a faculty member. This course may be repeated for credit. |
|
香港科技大学大数据科技硕士教师名单
蔡剑锋教授
PhD 香港中文大学
副教授, 数学系
研究方向:Computational harmonic analysis, optimization,
numerical linear algebra, and their applications to the imaging sciences and
inverse problems.
Kani CHEN
PhD 哥伦比亚大学
教授, 数学系
研究方向:Survival and Longitudinal Data Analysis, Empirical
Process, Stochastic Modeling, Financial Statistics.
陈雷教授
PhD 滑铁卢大学
副教授, 计算机科学及工程学系
研究方向:Multimedia databases; data management over sensor
network and P2P network; stream data management; data mining; machine learning.
钟志成教授
PhD 牛津大学
教授, 计算机科学及工程学系
研究方向:Medical image processing and analysis; computer
vision; statistical signal modeling.
许彬教授
PhD 剑桥大学
助理教授, 计算机科学及工程学系
研究方向: Networking and Computer Systems, Human-Computer
Interaction
荆炳义教授
PhD 雪梨大学
教授, 数学系
研究方向:Probability and Statistics, Bioinformatics,
Financial Econometrics, Machine Learning and Data Mining
郭天佑教授
PhD 香港科技大学
教授, 计算机科学及工程学系
研究方向:Kernel methods, Machine learning, Pattern
recognition, Artificial neural networks, Applications: Computer vision and
image processing, speech processing, pervasive computing
梁承裕教授
PhD 加州大学洛杉矶分校
副教授, 数学系
研究方向:Numerical methods for partial differential
equations, Computational mathematics, Scientific computation
李波教授
PhD 马萨诸塞大学阿默斯特分校
副教授, 计算机科学及工程学系
研究方向:large-scale content distribution in the Internet,
Peer-to-Peer media streaming, the Internet topology, cloud computing, green
computing and communications.
凌仕卿教授
PhD 香港大学
教授, 数学系
研究方向:Large sample theory, Empirical processes,
Nonstationary time series, Nonlinear time series, Long memory time series,
Econometrics
罗琼教授
PhD 威斯康辛大学麦迪逊分校
副教授, 计算机科学及工程学系
研究方向:data management on modern hardware, GPU
acceleration for data analytics, and database support for e-science
屈华民教授
PhD 美国纽约州立石溪大学
副教授, 计算机科学及工程学系
研究方向:Visualization; computer graphics; medical imaging.
汪扬教授
PhD 哈佛大学
讲座教授, 数学系
研究方向:Fractal geometry; wavelets and frames; signal
processing, data analysis using machine learning; wavelets and analysis;
tiling; digital signal processing; analog to digital conversion; supply chain
management.
杨强教授
PhD 马里兰大学帕克分校
New Bright Professor of Engineering, 讲座教授, 计算机科学及工程学系
研究方向:Data mining; artificial intelligence: machine
learning; planning and activity recognition. Chair Professor, Department of
Computer Science and Engineering.
微信搜索“指南者教育”,添加指南者教育微信公众号,了解最新留学动态!